logo

johzu

About

Hypotrochoid

Definition

Hypotrochoids are plane curves traced by a fixed point attached to a circle of radius \(r\) that rolls without slipping inside another fixed circle of radius \(R\). The shape of the curve depends on the distance \(d\) from the point to the center of the rolling circle. The general parametric equations for an hypotrochoid are:

$$ x \left(\theta\right)= \left(R - r\right)\cos \theta + d \cos \left(\frac{R - r}{r} \theta \right) $$

$$ y \left(\theta\right)= \left(R - r\right)\sin \theta - d \sin \left(\frac{R - r}{r} \theta \right) $$

where:

Characteristics

Conversion to polar coordinates

To express the curve as \(r(\theta)\), we use:

$$r(\theta) = \sqrt{x\left(\theta\right)^{2} + y\left(\theta\right)^{2}}$$

Substituting \(x(\theta)\) and \(y(\theta)\):

$$\begin{split} r(\theta) &= \left( \left[ \left\lbrace R - r \right\rbrace \cos\theta - d\cos \left\lbrace \frac{R - r}{r} \theta \right\rbrace \right]^{2} \right. \\ &+ \left. \left[ \left\lbrace R - r \right\rbrace \sin\theta - d \sin \left\lbrace \frac{R - r}{r} \theta \right\rbrace \right]^{2}\right)^{\frac{1}{2}} \end{split}$$

After expanding and simplifying, we obtain:

$$r(\theta) = (R - r) + d \cos \left( \frac{R - r}{r} \theta \right)$$

This equation describes the radial distance from the origin to the tracing point in terms of the angle \(θ\), showing the oscillating nature of the hypotrochoid.

Animation

Move sliders \(d\) (point from a certain internal circle center distance), \(R\) (external circle radius) or \(r\) (internal circle radius) to change the hypotrochoid. Press the "Start" button to watch the animation, this will move the \(t\) (time) slider. Press the "Stop" button to interrupt the animation and press the "Reset" button to reboot the starting values.



See also

Epitrochoid

Lissajous Curves

Rhodonea Curves