logo

johzu

About

Temperature conversion tables


Temperatures on scales that either do not share a numeric zero or are proportionally related cannot correctly be mathematically equated (related using the symbol = = ), and thus temperatures on different scales are more correctly described as corresponding (related using the symbol =\overset{\frown}{=} it reads 'corresponds to').

Celsius (C) \left( ^{\circ}\mathrm{C} \right)

scale from to
Kelvin y C=(x+273.15)Ky\ ^{\circ}\mathrm{C} \overset{\frown}{=} \left( x + 273.15 \right)\mathrm{K} y K=(x273.15) Cy\ \mathrm{K} \overset{\frown}{=} \left( x - 273.15 \right)\ ^{\circ}\mathrm{C}
Fahrenheit y C=(x×95+32) Fy\ ^{\circ}\mathrm{C} \overset{\frown}{=} \left(x \times \frac{9}{5} + 32\right)\ ^{\circ}\mathrm{F} y F=(x32)×59 Cy\ ^{\circ}\mathrm{F} \overset{\frown}{=} \left(x - 32\right) \times \frac{5}{9} \ ^{\circ}\mathrm{C}
Rankine y C=(x+273.15)×95 Ry\ ^{\circ}\mathrm{C} \overset{\frown}{=} \left(x + 273.15\right) \times \frac{9}{5} \ ^{\circ}\mathrm{R} y R=(x491.67)×59 Cy\ ^{\circ}\mathrm{R} \overset{\frown}{=} \left(x - 491.67\right) \times \frac{5}{9} \ ^{\circ}\mathrm{C}
Delisle y C=(100x)×32 Dey\ ^{\circ}\mathrm{C} \overset{\frown}{=} \left(100 - x \right) \times \frac{3}{2}\ ^{\circ}\mathrm{De} y De=(100x×23) Cy\ ^{\circ}\mathrm{De} \overset{\frown}{=} \left(100 - x \times \frac{2}{3}\right)\ ^{\circ}\mathrm{C}
Newton y C=x×33100 Ny\ ^{\circ}\mathrm{C} \overset{\frown}{=} x \times \frac{33}{100} \ ^{\circ}\mathrm{N} y N=x×10033 Cy\ ^{\circ}\mathrm{N} \overset{\frown}{=} x \times \frac{100}{33} \ ^{\circ}\mathrm{C}
Réaumur y C=x×45 Reˊy\ ^{\circ}\mathrm{C} \overset{\frown}{=} x \times \frac{4}{5} \ ^{\circ}\mathrm{Ré} y Reˊ=x×54 Cy\ ^{\circ}\mathrm{Ré} \overset{\frown}{=} x \times \frac{5}{4} \ ^{\circ}\mathrm{C}
Rømer x C=(x×2140+7.5) Røx\ ^{\circ}\mathrm{C} \overset{\frown}{=} \left(x \times \frac{21}{40} + 7.5 \right) \ ^{\circ}\mathrm{Rø} x Rø=(x7.5)×4021 Cx\ ^{\circ}\mathrm{Rø} \overset{\frown}{=} \left(x - 7.5 \right) \times \frac{40}{21} \ ^{\circ}\mathrm{C}

Kelvin (K) \left( \mathrm{K} \right)

scale from to
Celsius y K=(x273.15) Cy\ \mathrm{K} \overset{\frown}{=} \left( x - 273.15 \right)\ ^{\circ}\mathrm{C} y C=(x+273.15)Ky\ ^{\circ}\mathrm{C} \overset{\frown}{=} \left( x + 273.15 \right)\mathrm{K}
Fahrenheit y K=(x×95459.67) Fy\ \mathrm{K} \overset{\frown}{=} \left(x \times \frac{9}{5} - 459.67 \right) \ ^{\circ}\mathrm{F} y F=(x+459.67)×59 Ky\ ^{\circ}\mathrm{F} \overset{\frown}{=} \left(x + 459.67\right) \times \frac{5}{9}\ \mathrm{K}
Rankine y K=x×95 Ry\ \mathrm{K} \overset{\frown}{=} x \times \frac{9}{5} \ ^{\circ}\mathrm{R} y R=x×59Ky\ ^{\circ}\mathrm{R} \overset{\frown}{=} x \times \frac{5}{9} \mathrm{K}
Delisle y K=(373.15x)×32 Dey\ \mathrm{K} \overset{\frown}{=} \left(373.15 - x \right) \times \frac{3}{2}\ ^{\circ}\mathrm{De} y De=(373.15x×23)Ky\ ^{\circ}\mathrm{De} \overset{\frown}{=} \left(373.15 - x \times \frac{2}{3} \right) \mathrm{K}
Newton y K=(x273.15)×33100 Ny\ \mathrm{K} \overset{\frown}{=} \left(x - 273.15\right) \times \frac{33}{100}\ ^{\circ}\mathrm{N} y N=(x×10033+273.15)Ky\ ^{\circ}\mathrm{N} \overset{\frown}{=} \left(x \times \frac{100}{33} + 273.15\right) \mathrm{K}
Réaumur y K=(x273.15)×45 Reˊy\ \mathrm{K} \overset{\frown}{=} \left(x - 273.15\right) \times \frac{4}{5} \ ^{\circ}\mathrm{Ré} y Reˊ=(x×54+273.15)Ky\ ^{\circ}\mathrm{Ré} \overset{\frown}{=} \left(x \times \frac{5}{4} + 273.15\right) \mathrm{K}
Rømer x K=((x273.15)×2140+7.5) Røx\ \mathrm{K} \overset{\frown}{=} \left(\left(x - 273.15\right) \times \frac{21}{40} + 7.5\right) \ ^{\circ}\mathrm{Rø} x Rø=((x7.5)×4021+273.15)Kx\ ^{\circ}\mathrm{Rø} \overset{\frown}{=} \left(\left(x - 7.5\right) \times \frac{40}{21} + 273.15\right) \mathrm{K}

Fahrenheit (F) \left( ^{\circ}\mathrm{F} \right)

scale from to
Celsius y F=(x32)×59 Cy\ ^{\circ}\mathrm{F} \overset{\frown}{=} \left(x - 32\right) \times \frac{5}{9} \ ^{\circ}\mathrm{C} y C=(x×95+32) Fy\ ^{\circ}\mathrm{C} \overset{\frown}{=} \left(x \times \frac{9}{5} + 32\right)\ ^{\circ}\mathrm{F}
Kelvin y F=(x+459.67)×59 Ky\ ^{\circ}\mathrm{F} \overset{\frown}{=} \left(x + 459.67\right) \times \frac{5}{9}\ \mathrm{K} y K=(x×95459.67) Fy\ \mathrm{K} \overset{\frown}{=} \left(x \times \frac{9}{5} - 459.67 \right) \ ^{\circ}\mathrm{F}
Rankine y F=(x+459.67) Ry\ ^{\circ}\mathrm{F} \overset{\frown}{=} \left(x + 459.67\right) \ ^{\circ}\mathrm{R} y R=(x459.67) Fy\ ^{\circ}\mathrm{R} \overset{\frown}{=} \left(x - 459.67\right) \ ^{\circ}\mathrm{F}
Delisle y F=(212x)×56 Dey\ ^{\circ}\mathrm{F} \overset{\frown}{=} \left(212 - x\right) \times \frac{5}{6} \ ^{\circ}\mathrm{De} y De=(212x×65) Fy\ ^{\circ}\mathrm{De} \overset{\frown}{=} \left(212 - x \times \frac{6}{5} \right) \ ^{\circ}\mathrm{F}
Newton y F=(x32)×1160 Ny\ ^{\circ}\mathrm{F} \overset{\frown}{=} \left(x - 32\right) \times \frac{11}{60} \ ^{\circ}\mathrm{N} y N=(x×6011+32) Fy\ ^{\circ}\mathrm{N} \overset{\frown}{=} \left( x \times \frac{60}{11} + 32 \right) \ ^{\circ}\mathrm{F}
Réaumur y F=(x32)×49 Reˊy\ ^{\circ}\mathrm{F} \overset{\frown}{=} (x - 32) \times \frac{4}{9} \ ^{\circ}\mathrm{Ré} y Reˊ=(x×94+32) Fy\ ^{\circ}\mathrm{Ré} \overset{\frown}{=} \left(x \times \frac{9}{4} + 32\right) \ ^{\circ}\mathrm{F}
Rømer y F=((x32)×724+7.5) Røy\ ^{\circ}\mathrm{F} \overset{\frown}{=} \left(\left(x - 32\right) \times \frac{7}{24} + 7.5\right) \ ^{\circ}\mathrm{Rø} y Rø=((x7.5)×247+32) Fy\ ^{\circ}\mathrm{Rø} \overset{\frown}{=} \left(\left(x - 7.5\right) \times \frac{24}{7} + 32\right) \ ^{\circ}\mathrm{F}

Rankine (R) \left( ^{\circ}\mathrm{R} \right)

scale from to
Celsius y R=(x491.67)×59 Cy\ ^{\circ}\mathrm{R} \overset{\frown}{=} \left(x - 491.67\right) \times \frac{5}{9} \ ^{\circ}\mathrm{C} y C=(x+273.15)×95 Ry\ ^{\circ}\mathrm{C} \overset{\frown}{=} \left(x + 273.15\right) \times \frac{9}{5} \ ^{\circ}\mathrm{R}
Kelvin y R=x×59Ky\ ^{\circ}\mathrm{R} \overset{\frown}{=} x \times \frac{5}{9} \mathrm{K} y K=x×95 Ry\ \mathrm{K} \overset{\frown}{=} x \times \frac{9}{5} \ ^{\circ}\mathrm{R}
Fahrenheit y R=(x459.67) Fy\ ^{\circ}\mathrm{R} \overset{\frown}{=} \left(x - 459.67\right) \ ^{\circ}\mathrm{F} y F=(x+459.67) Ry\ ^{\circ}\mathrm{F} \overset{\frown}{=} \left(x + 459.67\right) \ ^{\circ}\mathrm{R}
Delisle y R=(671.67x)×56 Dey\ ^{\circ}\mathrm{R} \overset{\frown}{=} \left(671.67 - x\right) \times \frac{5}{6} \ ^{\circ}\mathrm{De} y De=(671.67x×65) Ry\ ^{\circ}\mathrm{De} \overset{\frown}{=} \left(671.67 - x \times \frac{6}{5}\right) \ ^{\circ}\mathrm{R}
Newton y R=(x491.67)×1160 Ny\ ^{\circ}\mathrm{R} \overset{\frown}{=} \left(x - 491.67\right) \times \frac{11}{60} \ ^{\circ}\mathrm{N} y N=(x×6011+491.67) Ry\ ^{\circ}\mathrm{N} \overset{\frown}{=} \left(x \times\frac{60}{11} + 491.67\right) \ ^{\circ}\mathrm{R}
Réaumur y R=(x491.67)×49 Reˊy\ ^{\circ}\mathrm{R} \overset{\frown}{=} (x - 491.67) \times \frac{4}{9} \ ^{\circ}\mathrm{Ré} y Reˊ=(x×94+491.67) Ry\ ^{\circ}\mathrm{Ré} \overset{\frown}{=} \left(x \times \frac{9}{4} + 491.67\right) \ ^{\circ}\mathrm{R}
Rømer y R=((x491.67)×724+7.5) Røy\ ^{\circ}\mathrm{R} \overset{\frown}{=} \left(\left(x - 491.67\right) \times \frac{7}{24} + 7.5\right) \ ^{\circ}\mathrm{Rø} y Rø=((x7.5)×247+491.67) Ry\ ^{\circ}\mathrm{Rø} \overset{\frown}{=} \left(\left(x - 7.5\right) \times \frac{24}{7} + 491.67\right) \ ^{\circ}\mathrm{R}

Delisle (De) \left( ^{\circ}\mathrm{De} \right)

scale from to
Celsius y De=(100x×23) Cy\ ^{\circ}\mathrm{De} \overset{\frown}{=} \left(100 - x \times \frac{2}{3}\right)\ ^{\circ}\mathrm{C} y C=(100x)×32 Dey\ ^{\circ}\mathrm{C} \overset{\frown}{=} \left(100 - x \right) \times \frac{3}{2}\ ^{\circ}\mathrm{De}
Kelvin y De=(373.15x×23)Ky\ ^{\circ}\mathrm{De} \overset{\frown}{=} \left(373.15 - x \times \frac{2}{3} \right) \mathrm{K} y K=(373.15x)×32 Dey\ \mathrm{K} \overset{\frown}{=} \left(373.15 - x \right) \times \frac{3}{2}\ ^{\circ}\mathrm{De}
Fahrenheit y De=(212x×65) Fy\ ^{\circ}\mathrm{De} \overset{\frown}{=} \left(212 - x \times \frac{6}{5} \right) \ ^{\circ}\mathrm{F} y F=(212x)×56 Dey\ ^{\circ}\mathrm{F} \overset{\frown}{=} \left(212 - x\right) \times \frac{5}{6} \ ^{\circ}\mathrm{De}
Rankine y De=(671.67x×65) Ry\ ^{\circ}\mathrm{De} \overset{\frown}{=} \left(671.67 - x \times \frac{6}{5}\right) \ ^{\circ}\mathrm{R} y R=(671.67x)×56 Dey\ ^{\circ}\mathrm{R} \overset{\frown}{=} \left(671.67 - x\right) \times \frac{5}{6} \ ^{\circ}\mathrm{De}
Newton y De=(100x×1150) Ny\ ^{\circ}\mathrm{De} \overset{\frown}{=} \left(100 - x \times \frac{11}{50}\right) \ ^{\circ}\mathrm{N} y N=(100x)× 5011Dey\ ^{\circ}\mathrm{N} \overset{\frown}{=} \left( 100 - x \right) \times\ \frac{50}{11} ^{\circ}\mathrm{De}
Réaumur y De=(100x×815) Reˊy\ ^{\circ}\mathrm{De} \overset{\frown}{=} \left( 100 - x \times \frac{8}{15} \right) \ ^{\circ}\mathrm{Ré} y Reˊ=(100x)158 Dey\ ^{\circ}\mathrm{Ré} \overset{\frown}{=} \left( 100 - x \right) \frac{15}{8} \ ^{\circ}\mathrm{De}
Rømer y De=(95x×720) Røy\ ^{\circ}\mathrm{De} \overset{\frown}{=} \left( 95 - x \times \frac{7}{20} \right) \ ^{\circ}\mathrm{Rø} y Rø=(95x)207 Dey\ ^{\circ}\mathrm{Rø} \overset{\frown}{=} \left( 95 - x \right) \frac{20}{7} \ ^{\circ}\mathrm{De}

Newton (N) \left( ^{\circ}\mathrm{N} \right)

scale from to
Celsius y N=x×10033 Cy\ ^{\circ}\mathrm{N} \overset{\frown}{=} x \times \frac{100}{33} \ ^{\circ}\mathrm{C} y C=x×33100 Ny\ ^{\circ}\mathrm{C} \overset{\frown}{=} x \times \frac{33}{100} \ ^{\circ}\mathrm{N}
Kelvin y N=(x×10033+273.15)Ky\ ^{\circ}\mathrm{N} \overset{\frown}{=} \left(x \times \frac{100}{33} + 273.15\right) \mathrm{K} y K=(x273.15)×33100 Ny\ \mathrm{K} \overset{\frown}{=} \left(x - 273.15\right) \times \frac{33}{100}\ ^{\circ}\mathrm{N}
Fahrenheit y N=(x×6011+32) Fy\ ^{\circ}\mathrm{N} \overset{\frown}{=} \left( x \times \frac{60}{11} + 32 \right) \ ^{\circ}\mathrm{F} y F=(x32)×1160 Ny\ ^{\circ}\mathrm{F} \overset{\frown}{=} \left(x - 32\right) \times \frac{11}{60} \ ^{\circ}\mathrm{N}
Rankine y N=(x×6011+491.67) Ry\ ^{\circ}\mathrm{N} \overset{\frown}{=}\left(x \times \frac{60}{11} + 491.67\right) \ ^{\circ}\mathrm{R} y R=(x491.67)×1160 Ny\ ^{\circ}\mathrm{R} \overset{\frown}{=} \left(x - 491.67\right) \times \frac{11}{60} \ ^{\circ}\mathrm{N}
Delisle y N=(100x)× 5011 Dey\ ^{\circ}\mathrm{N} \overset{\frown}{=} \left( 100 - x \right) \times\ \frac{50}{11}\ ^{\circ}\mathrm{De} y De=(100x×1150) Ny\ ^{\circ}\mathrm{De} \overset{\frown}{=} \left(100 - x \times \frac{11}{50}\right) \ ^{\circ}\mathrm{N}
Réaumur y N=x×8033 Reˊy\ ^{\circ}\mathrm{N} \overset{\frown}{=} x \times \frac{80}{33} \ ^{\circ}\mathrm{Ré} y Reˊ=x×3380 Ny\ ^{\circ}\mathrm{Ré} \overset{\frown}{=}x \times \frac{33}{80} \ ^{\circ}\mathrm{N}
Rømer y N=(x×3522+25011) Røy\ ^{\circ}\mathrm{N} \overset{\frown}{=} \left( x \times \frac{35}{22} +\frac{250}{11} \right) \ ^{\circ}\mathrm{Rø} y Rø=(x×22351007) Ny\ ^{\circ}\mathrm{Rø} \overset{\frown}{=} \left(x \times \frac{22}{35} -\frac{100}{7} \right) \ ^{\circ}\mathrm{N}

Réaumur (Reˊ) \left( ^{\circ}\mathrm{Ré} \right)

scale from to
Celsius y Reˊ=x×54 Cy\ ^{\circ}\mathrm{Ré} \overset{\frown}{=} x \times \frac{5}{4} \ ^{\circ}\mathrm{C} y C=x×45 Reˊy\ ^{\circ}\mathrm{C} \overset{\frown}{=} x \times \frac{4}{5} \ ^{\circ}\mathrm{Ré}
Kelvin y Reˊ=(x×54+273.15)Ky\ ^{\circ}\mathrm{Ré} \overset{\frown}{=} \left(x \times \frac{5}{4} + 273.15\right) \mathrm{K} y K=(x273.15)×45 Reˊy\ \mathrm{K} \overset{\frown}{=} \left(x - 273.15\right) \times \frac{4}{5} \ ^{\circ}\mathrm{Ré}
Fahrenheit y Reˊ=(x×94+32) Fy\ ^{\circ}\mathrm{Ré} \overset{\frown}{=} \left(x \times \frac{9}{4} + 32\right) \ ^{\circ}\mathrm{F} y F=(x32)×49 Reˊy\ ^{\circ}\mathrm{F} \overset{\frown}{=} (x - 32) \times \frac{4}{9} \ ^{\circ}\mathrm{Ré}
Rankine y Reˊ=(x×94+491.67) Ry\ ^{\circ}\mathrm{Ré} \overset{\frown}{=} \left(x \times \frac{9}{4} + 491.67\right) \ ^{\circ}\mathrm{R} y R=(x491.67)×49 Reˊy\ ^{\circ}\mathrm{R} \overset{\frown}{=} (x - 491.67) \times \frac{4}{9} \ ^{\circ}\mathrm{Ré}
Delisle y Reˊ=(100x)158 Dey\ ^{\circ}\mathrm{Ré} \overset{\frown}{=} \left( 100 - x \right) \frac{15}{8} \ ^{\circ}\mathrm{De} y De=(100x×815) Reˊy\ ^{\circ}\mathrm{De} \overset{\frown}{=} \left( 100- x \times \frac{8}{15} \right) \ ^{\circ}\mathrm{Ré}
Newton y Reˊ=x×3380 Ny\ ^{\circ}\mathrm{Ré} \overset{\frown}{=}x \times \frac{33}{80} \ ^{\circ}\mathrm{N} y N=x×8033Reˊy\ ^{\circ}\mathrm{N} \overset{\frown}{=} x \times \frac{80}{33} ^{\circ}\mathrm{Ré}
Rømer y Reˊ=(x×2132+758) Røy\ ^{\circ}\mathrm{Ré} \overset{\frown}{=} \left( x \times \frac{21}{32} + \frac{75}{8} \right) \ ^{\circ}\mathrm{Rø} y Rø=(x×32211007) Reˊy\ ^{\circ}\mathrm{Rø} \overset{\frown}{=} \left(x \times \frac{32}{21} - \frac{100}{7} \right) \ ^{\circ}\mathrm{Ré}

Rømer (Rø) \left( ^{\circ}\mathrm{Rø} \right)

scale from to
Celsius y Rø=(x7.5)×4021 Cy\ ^{\circ}\mathrm{Rø} \overset{\frown}{=} \left(x - 7.5 \right) \times \frac{40}{21} \ ^{\circ}\mathrm{C} y C=(x×2140+7.5) Røy\ ^{\circ}\mathrm{C} \overset{\frown}{=} \left(x \times \frac{21}{40} + 7.5 \right) \ ^{\circ}\mathrm{Rø}
Kelvin y Rø=((x7.5)×4021+273.15)Ky\ ^{\circ}\mathrm{Rø} \overset{\frown}{=} \left(\left(x - 7.5\right) \times \frac{40}{21} + 273.15\right) \mathrm{K} y K=((x273.15)×2140+7.5) Røy\ \mathrm{K} \overset{\frown}{=} \left(\left(x - 273.15\right) \times \frac{21}{40} + 7.5\right) \ ^{\circ}\mathrm{Rø}
Fahrenheit y Rø=((x7.5)×247+32) Fy\ ^{\circ}\mathrm{Rø} \overset{\frown}{=} \left(\left(x - 7.5\right) \times \frac{24}{7} + 32\right) \ ^{\circ}\mathrm{F} y F=((x32)×724+7.5) Røy\ ^{\circ}\mathrm{F} \overset{\frown}{=} \left(\left(x - 32\right) \times \frac{7}{24} + 7.5\right) \ ^{\circ}\mathrm{Rø}
Rankine y Rø=((x7.5)×247+491.67) Ry\ ^{\circ}\mathrm{Rø} \overset{\frown}{=} \left(\left(x - 7.5\right) \times \frac{24}{7} + 491.67\right) \ ^{\circ}\mathrm{R} y R=((x491.67)×724+7.5) Røy\ ^{\circ}\mathrm{R} \overset{\frown}{=} \left(\left(x - 491.67\right) \times \frac{7}{24} + 7.5\right) \ ^{\circ}\mathrm{Rø}
Delisle y Rø=(95x)207 Dey\ ^{\circ}\mathrm{Rø} \overset{\frown}{=} \left( 95 - x \right) \frac{20}{7} \ ^{\circ}\mathrm{De} y De=(95x×720) Røy\ ^{\circ}\mathrm{De} \overset{\frown}{=} \left( 95 - x \times \frac{7}{20} \right) \ ^{\circ}\mathrm{Rø}
Newton y Rø=(x×22351007) Ny\ ^{\circ}\mathrm{Rø} \overset{\frown}{=} \left(x \times \frac{22}{35} -\frac{100}{7} \right) \ ^{\circ}\mathrm{N} y N=(x×3522+25011) Røy\ ^{\circ}\mathrm{N} \overset{\frown}{=} \left( x \times \frac{35}{22} +\frac{250}{11} \right) \ ^{\circ}\mathrm{Rø}
Réaumur y Rø=(x×32211007) Reˊy\ ^{\circ}\mathrm{Rø} \overset{\frown}{=} \left(x \times \frac{32}{21} - \frac{100}{7} \right) \ ^{\circ}\mathrm{Ré} y Reˊ=(x×2132+758) Røy\ ^{\circ}\mathrm{Ré} \overset{\frown}{=} \left( x \times \frac{21}{32} + \frac{75}{8} \right) \ ^{\circ}\mathrm{Rø}

See also

Anders Celsius